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We investigate the relaxation of the nematic deformation when the distorting field is switched off. We show
that the usual analysis based on the diffusionlike equation does not allow a complete description of the
phenomenon because it does not permit one to satisfy the initial boundary condition, at t=0, on the first time
derivative of the nematic tilt angle. An alternative approach to the problem, taking into account the inertial
properties of the nematic molecules, allows one to satisfy the initial boundary conditions on the first-order time
derivative of the tilt angle. In this framework the dynamical evolution of the nematic deformation, in the initial
time, depends on the inertial properties of the nematic molecules. However, the typical relaxation time is so
short that, for all practical effects, the first time derivative of the tilt angle is discontinuous at t=0. A more
realistic description involves the switching time of the distorting field. In this framework, the initial boundary
condition of the first-order derivative is automatically satisfied. Our analysis shows that the description based
on the diffusion equation works well when the switching time is very small with respect to the diffusion time.
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I. INTRODUCTION

Nematic liquid crystals are anisotropic liquid. Due to their
anisotropy they interact with electric and magnetic fields.
The nematic liquid crystal displays are based on the interac-
tion of the nematic dielectric anisotropy with an external
electric field. We are interested in the relaxation of an im-
posed deformation when the distorting field is removed. This
problem has been analyzed by several groups �1–9�. The
standard theoretical analysis of this phenomenon is based on
the diffusion equation, where the elastic torque is balanced
by the viscous torque �10,11�. In this description, the diffu-
sion equation is solved with the initial boundary condition
that initial nematic profile coincides with the deformation in
the presence of the distorting field. According to this model,
the first time derivative of the nematic distortion is discon-
tinuous at the instant when the field is removed. To solve this
inconsistence of the model, it has been proposed to take into
account the inertial moment of the nematic molecules, in
such a manner that the dynamical equation of the problem is
of second order in time. However, the typical relaxation time
related to the inertial properties of the nematic molecules is
so short that, for all practical effects, the first time derivative
of the tilt angle is discontinuous at t=0. We show that to
describe the phenomenon in a proper manner it is necessary
to take into account that the switching time of the distorting
field is finite. In this framework, the continuity of the first
time derivative of the nematic deformation is automatically
satisfied. Our paper is organized as follows. The system un-
der investigation is described in Sec. II. The standard analy-
sis based on the diffusion equation is presented in Sec. III.
The influence of the inertial properties of the nematic mol-
ecules on the relaxation phenomenon is discussed in Sec. IV.
The role of the switching time on the relaxation of the im-
posed deformation is investigated in Sec. V. In Sec. VI we
compare the predictions of the considered models, and the
final section, Sec. VII, is devoted to the conclusions. The
Appendix is devoted to the derivation of the electrostatic
energy density of a nematic liquid crystal subjected to an
external field, in the limit of small deformation of the direc-
tor field.

II. POSITION OF THE PROBLEM

We discuss the relaxation of a deformation induced by an
external field in a nematic liquid crystal cell when the dis-
torting field is removed. The nematic orientation is defined
by a vectorial field n, coinciding with the statistical average
of the molecular direction �12�. We consider a nematic cell in
the shape of a slab of thickness d. The Cartesian reference
frame used in the description has the z axis normal to the
limiting surfaces, located at z= �d /2. The surfaces of the
slab are treated in such a manner to have the easy axes par-
allel to each other, at an angle �s with the z axis �13�. In this
framework the nematic deformation is contained in a plane
we indicate by �x ,z�. In the following the surface anchoring
energy is supposed to be strong, in such a manner that the
surface nematic orientation coincides with the easy direction
for all imposed deformation. The nematic liquid crystal is
assumed to have a positive dielectric anisotropy �12�, and the
distorting electric field, E, parallel to the z axis. In this situ-
ation, the electric field tends to align the nematic director
along its direction.

Let us consider now the nematic sample submitted to a
constant electric field E0=E0z �see Appendix�. The actual
nematic orientation, �=��z�, is the one where the bulk den-
sity of elastic torque is balanced by the bulk density of elec-
tric torque �14�

k
d2�

dz2 −
1

2
�aE0

2 sin�2�� = 0, �1�

where k is the elastic constant of Frank, � is the angle
formed by the nematic director with the z axis, and �a the
dielectric anisotropy of the liquid crystal. Equation �1� is
valid in the one-constant approximation, over which will be
based our analysis �12�. The stable �=��z� is the solution of
Eq. �1� that satisfies the boundary conditions

���d/2� = �s, �2�

related to the strong anchoring hypothesis. In our analysis we
assume that �s is small, in such a manner that sin�2�s�
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�2�s. Since ��z���s, Eq. �1� can be linearized, and the
fundamental equation of the problem reads

k
d2�

dz2 − �aE0
2� = 0. �3�

The solution of Eq. �3� with the boundary conditions �2� is

��z� = �s
cosh�z/��

cosh�d/2��
, �4�

where �= �1 /E0��k /�a is the electric coherence length �12�.
In the following the solution given by Eq. �4� will be written
as

��z� = �s + �	�z�, where �	�z� = �s� cosh�z/��
cosh�d/2��

− 1� .

�5�

For reasons that will be clear in the following, it is useful to
decompose �	�z� is series of Fourier as follows:

�	�z� = 	
n=0




Dn cos�anz� , �6�

where

an = �2n + 1���/d�, and Dn = − 4�s
�− 1�n

an�1 + �an��2�
.

�7�

As it is clear from the discussion reported above, when
the electric field is constant, the tilt angle depends just on z,
and its time derivative is identically zero. We are interested
now in the relaxation of the deformation ��z� when the dis-
torting electric field is switched off. We assume that the elec-
tric field is removed at t=0. For t�0, the nematic tilt angle
depends on z and t, �=��z , t�, and it is such that

lim
t→0

��z,t� = ��z�, and lim
t→


��z,t� = �s. �8�

In the following sections we describe the different models
proposed to describe the evolution of the tilt angle we are
looking for.

III. STANDARD ANALYSIS

In the standard analysis �10� the relaxation of the initial
deformation is described by the partial differential equation

k
�2�D

�z2 = 

��D

�t
, �9�

stating that during the relaxation, the elastic torque is bal-
anced by the viscous torque. In Eq. �9� the coefficient 
 is
the rotational viscosity of the nematic liquid crystal �12�.
Equation �9� holds true when the inertial moment of the
nematic molecules is negligible, and the electric field is re-
moved suddenly, with switching time zero. It is written by
neglecting the hydrodynamic backflow induced by the reori-
entation of the nematic director �15�. This approximation

works well only in the case where the deformation of the
nematic liquid crystal is small, as we will suppose in the
following. We look for a solution of Eq. �9� of the type

�D�z,t� = �s + ���z,t� , �10�

where, as it follows from Eqs. �8�,

���z,0� = �	�z�, and lim
t→


���z,t� = 0. �11�

Since the anchoring is strong, we have also the boundary
condition

����d/2,t� = 0. �12�

By taking into account Eq. �12�, the solution of Eq. �9�, with
the boundary conditions �11�, is

���z,t� = 	
n=0




Dn cos�anz�exp�−
k



an

2t� . �13�

The relaxation times are given by

�n =



k

1

an
2 =

�D

�2n + 1�2�2 , �14�

where �D=
d2 /k is the diffusion time. The analysis pre-
sented above looks coherent. However, there are a few black
points. For t�0 the actual nematic profile is such that its
time derivative is identically zero. On the contrary, according
to Eq. �9�, for t�0 we have

��D

�t
=

k




�2�D

�z2 . �15�

In particular, from Eq. �15�, taking into account Eq. �13�, we
get

� ��D

�t
�

t=0+
=

k




d2�

dz2 , �16�

that for Eq. �4� can be rewritten as

� ��D

�t
�

t=0+
=

k


�2�s
cosh�z/��

cosh�d/2��
. �17�

From Eq. �16� it follows that the first-order time derivative of
the tilt angle is discontinuous at t=0, and hence the second-
order time derivative has, at t=0, a �-Dirac behavior. Equa-
tion �17� indicates that the typical time over which �� /�t is
varying, at t=0, is of the order of the relaxation time con-
nected to the coherence length �, ��=
�2 /k��D.

From Eq. �15� we obtain that the second time derivative
of the tilt angle is given by

�2�D

�t2 =
k




�

�t
� �2�D

�z2 � =
k




�2

�z2� ��D

�t
� = � k



�2�4�D

�z4 .

�18�

For t=0 the initial rotational acceleration is then

� �2�D

�t2 �
t=0+

= � k



�2d4�

dz4 = � k


�2�2

�s
cosh�z/��

cosh�d/2��
, �19�

indicating that the typical time is ��.
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According to the analysis presented above, it is impos-
sible, in the framework of the model based on the diffusion
equation, Eq. �9�, to satisfy the initial condition on the first
time derivative. The second time derivative is also discon-
tinuous at t=0, and exhibits a divergence, of the type of
�-Dirac at t=0.

IV. INERTIAL CONTRIBUTION TO THE TOTAL TORQUE
EQUILIBRIUM

A possible way to satisfy the initial condition on the first-
order time derivative of the nematic director is to take into
account the inertial contribution to the total torque. Accord-
ing to elementary mechanics �16�, the dynamical equation
for the nematic director, when the inertial contribution is not
negligible, is

k
�2�I

�z2 = 

��I

�t
+ I

�2�I

�t2 , �20�

where the I is the molecular inertial momentum, per unit
volume. Equation �20� has to be solved with the time bound-
ary conditions

�I�z,0� = ��z�, and � ��I

�t
�

t=0
= 0, �21�

related to the continuity of the function and of its time de-
rivative, at t=0,

lim
t→


�I�z,t� = �s, and lim
t→


��I

�t
= 0, �22�

related to the stable state imposed by the surface treatment,
and ���d /2, t�=�s, due to the strong anchoring hypothesis.

We look for a solution of Eq. �20�, with the boundary
conditions Eqs. �21� and �22�, of the type

�I�z,t� = �s + 	
n=0




Cn�t�cos�anz� , �23�

where, as before, an= �2n+1��� /d�, and the functions Cn�t�
are such that

Cn�0� = Dn, �dCn

dt
�

t=0
= 0, and lim

t→

Cn�t� = 0.

�24�

By substituting the ansatz �23� into Eq. �20�, taking into
account the linear independence of the set of functions
cos�anz� we get that the coefficients Cn�t� are solutions of the
differential equations

I

k

d2Cn

dt2 +



k

dCn

dt
+ an

2Cn = 0. �25�

The solutions of Eq. �25�, satisfying the conditions �24� are

Cn�t� = Tn1 exp�− �n1t� + Tn2 exp�− �n2t� , �26�

where

�n1 =



2I
+�� 


2I
�2

−
k

I
an

2,

�n2 =



2I
−�� 


2I
�2

−
k

I
an

2, �27�

and

Tn1 =
�n2

�n2 − �n1
Dn,

Tn2 = −
�n1

�n2 − �n1
Dn. �28�

In the limit of I→0 from Eqs. �27� we get

�n1 �



I
, and �n2 �

k



an

2. �29�

The relaxation times are �n1=1 /�n1 and �n2=1 /�n2. For I
→0, corresponding to the previous case, the characteristic
exponents tend to �n1→
, and �n2→kan

2 /
, and hence �n1
→0 and �n2→
 / �kan

2�, whereas the coefficients, in the same
limit, tend to Tn1→0, and Tn2=Dn, as expected �see Eq.
�13��.

In the model under consideration, the initial angular ac-
celeration of the nematic director, as follows from Eq. �20�,
taking into account the boundary conditions �21�, is

� �2�I

�t2 �
t=0

=
k

I

d2�

dz2 =
k

I�2�s
cosh�z/��

cosh�d/2��
. �30�

As already observed in the previous section, when I=0, the
initial angular acceleration of the nematic director diverges.

To have an idea about the importance of the inertial con-
tribution to the dynamics of the relaxation, we write Eq. �20�
in terms of dimensionless coordinates zr=z /d and tr= t /�D,
where �D= �
 /k�d2 is the diffusion time introduced above.
We get

�2�I

�zr
2 =

��I

�tr
+ �

�2�

�tr
2 , �31�

where

� =
kI


2d2 , �32�

is the dimensionless small parameter taking into account the
inertial properties of the nematic molecules. The bulk density
of moment of inertia of the nematic molecules is defined by
I=�b2, where � is the bulk density and b a molecular dimen-
sion. For typical nematic liquid crystals I is of the order of
10−15 kg /m �17�. By assuming k=10−11 kg /m, 

=10−1 Pa s, d=10−6 m �17� we obtain ��10−12. This num-
ber is extremely small. Consequently, for actual values of the
nematic parameters, the importance of the inertial properties
is limited to the initial time. For times of the order of �D, the
role of the inertial contribution to the equilibrium of the
torques in the bulk is negligible. For this reason, in the fol-
lowing we will consider very large values for the density of
the momentum of inertia �25�10−12 kg /m� I�25
�10−8 kg /m�, just to show the effect of the inertial term in
the evolution of the nematic deformation when the field is
switched off.
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V. INFLUENCE OF THE SWITCHING TIME
OF THE DISTORTING FIELD

ON THE RELAXATION PROCESS

In the previous sections, the distorting field was assumed
to be removed in a discontinuous manner. This means that
the switching time was supposed zero. Of course, in real
system, the switching time is finite. In this section we ana-
lyze the influence of a finite switching time on the relaxation
of the initial deformation of the nematic liquid crystal. We
will base our investigation of the equation

k
�2�E

�z2 − �aE2�t��E = 

��E

�t
, �33�

where E2�t�=E0
2f�t�, with f�t�=1 for t�0, and f�t�→0 for

t→
. In the following we will consider the simple case

f�t� = exp�− t/�� , �34�

where � is the switching time. Equation �33� is the dynamical
equilibrium of the torques, when the inertial properties of the
liquid crystal can be neglected �17�, and in the following will
be rewritten as

�2�E

�z2 −
1

�2 f�t��E =



k

��E

�t
. �35�

Equation �35� has to be solved by taking into account the
boundary conditions �E��d /2, t�=�s and �E�z ,0�=��z�,
where ��z� is solution of Eq. �3�. We observe that from Eq.
�35� it follows that

� ��E

�t
�

t=0
=

k



� �2�E

�z2 −
1

�2 f�t��E�
t=0

=
k



�d2�

dz2 −
1

�2�� = 0,

�36�

i.e., the first-order time derivative of the tilt angle is auto-
matically continuous at t=0. From Eq. �35� we obtain for the
initial angular acceleration

� �2�E

�t2 �
t=0

= −
k


�2�df

dt
�

t=0
��z� . �37�

From Eq. �37� it follows that the initial angular acceleration
is positive. In the simple case where f�t� is given by Eq. �34�
we get

� �2�E

�t2 �
t=0

=
k


�2�
��z� =

1

���
��z� , �38�

from which it follows that the effective characteristic time is
the geometrical average of �� and �.

Let us consider now the general solution of Eq. �35� with
the relevant boundary conditions. We look for a solution of
the type

�E�z,t� = �s + 	
n=0




Kn�t�cos�anz� , �39�

where Kn�0�=Dn. By substituting Eq. �39� into Eq. �35�, af-
ter simple calculations we obtain

dKn

dt
+ Hn�t�Kn = − gn�t� , �40�

where

Hn�t� =
k



�an

2 +
1

�2 f�t�� ,

gn�t� = 4
�− 1�n

and

k


�2 f�t��s. �41�

The solution we are looking for Kn�t� is

Kn�t� = e−un�t�
Dn − �
0

t

eun�t��gn�t��dt�� , �42�

where

un�t� = �
0

t

Hn�t��dt�. �43�

In the case where f�t� is given by Eq. �34� a simple calcula-
tion gives

un�t� =
k




 �

�2 �1 − e−t/�� + an
2t� . �44�

This relation shows that in the limit of large t, un�t�
→ �k /
�an

2t. This means that, for large t the relaxation times
are the ones related to the diffusion times. In the opposite
limit, where t→0, from Eq. �44� we get

un�t� =
k




 1

�2 + �2n + 1�2��

d
�2�t , �45�

that for n=0 reads

u0�t� =
k




 1

�2 + ��

d
�2�t . �46�

From this relation it follows that, for ��d, the relaxation
time is comparable with the diffusion time associated to the
electric coherence length, ��.

The solution of the problem, for generic t, can be easily
obtained numerically by means of the formulas presented
above. In the next section we will investigate the role of the
switching time on the relaxation of the initial deformation.

VI. COMPARISON OF THE PREDICTIONS
OF THE CONSIDERED MODELS

To compare the predictions of the model considered
above we assume: k=10−11 N, 
=10−1 Pa s, d=10−6 m
�12�. With these values �D=10−2 s. We suppose, further-
more, that the coherence length, related to the amplitude of
the distorting field, is �=0.1d. For the inertial properties we
take 25�10−12 kg /m� I�25�10−8 kg /m, which is very
large with respect to real values for typical nematic liquid
crystal �17�, just to show the possible role of the inertial
properties on the relaxation phenomenon. The numerical cal-
culations have been performed by summation of the series of

ERVIN KAMINSKI LENZI AND GIOVANNI BARBERO PHYSICAL REVIEW E 81, 021703 �2010�

021703-4



Fourier, with MATHEMATICA. The convergence of the series
was tested by considering a large number of terms �100–500
terms�. The number of terms used to perform the calculations
was determined by means of the condition �
Sn+1−Sn
��
�10−8 where Sn=	k=0

n Bk, is the sum of the first n terms of
the series, whose elements are indicated by Bk.

In Fig. 1, we show the first-order time derivative of the tilt
angle, at z=d /3, versus t derived with the model based on
the equation of diffusion. In the same figure, the dotted line
blue shows the value of this quantity evaluated by means of
Eq. �17�. The inset in Fig. 1 reports the tilt angle profile for
different times, derived by means of the model of diffusion,
expressed in terms of the diffusion time �D. The initial profile
��z� is represented by a dotted line red.

In Fig. 2, we show �D�̇t versus t �where �̇t��� /�t�
evaluated for z=d /3 derived by means of the model where
the inertial properties of the nematic molecules are taken into
account, for I=25�10−8 kg /m, I=25�10−9 kg /m, and I
=25�10−12 kg /m. Now the initial condition �� /�t=0 for
t=0 is satisfied for all values of I, in contrast to the diffusion
model. However, for small t the �� /�t changes rapidly, as it
follows from Eq. �30�. For t /�D�10−2 the predictions of the
model taking into account the inertial properties of the mol-
ecules coincides, practically, with the model based on the
diffusion equation. In the inset we show �D�̇t versus t for
t /�D�4�10−4 for the values of I reported above. As ex-

pected, as I→0, �D�̇t versus t presents a discontinuity for t
=0.

In Fig. 3, we show for different times the profile tilt angle
obtained with Eq. �23� with I=25�10−8 kg /m. The diffu-
sion model, where the inertial properties of the liquid crystal
have been neglected, is also illustrated in this figure. From
this figure it follows that the tilt angle profiles predicted by
the two models practically coincides for all t /�D.

In Fig. 4, we show �D�̇t versus t, derived with the model
where the switching time of the distorting field is taken into
account, evaluated for z=d /3. Now the initial condition
�� /�t=0 for t=0 is automatically satisfied. This figure
shows that for ���D the predictions of the model taking into
account the finite switching time of the distorting field tends
to those of the model based on the diffusion equation.

In Fig. 5, we illustrate the profile for the tilt angle ob-
tained in presence of an time dependent electric field and the
diffusion model. In Fig. 6, we illustrate the prediction for
�D�̇t versus t which is obtained with models analyzed above,
evaluated for z=d /3.

In our paper we have considered the situation in which the
distorting field is removed, and the initial nematic distortion
��z ,0�=��z� relaxes toward the undistorted configuration
limt→
 ��z , t�=�s. Of course, a similar analysis can be done
when the distorting field is switched on. In this case the
initial boundary condition is ��z ,0�=�s, and for t→
,
limt→
 ��z , t�=��z�. A simple extension of the presented in-
vestigation allows to investigate the evolution of the nematic

FIG. 1. �Color online� �D�̇t versus t /�D �where �̇t��� /�t�
evaluated for z=d /3 for the diffusion model. The horizontal dotted
blue line corresponds to this quantity evaluated by means of Eq.
�17�. The inset illustrates the behavior of the tilt profile angle for
different times. The dotted red line is the initial profile of the sys-
tem, ��z�.

FIG. 2. �Color online� �D�̇t versus t evaluated for z=d /3 for the
inertial model for two different values of I, in kg/m �dashed red and
dotted green lines�. The diffusion model �continuous black line� is
also shown in this figure as well as the quantity evaluated by means
of Eq. �17� �horizontal blue dotted line�.
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orientation when the easy direction is modified by means of
an external action �18–24�.

VII. CONCLUSIONS

We have investigated the relaxation of the nematic defor-
mation when the distorting field is switched off. We have
shown that the usual analysis based on the diffusion like
equation does not allow a complete description of the phe-
nomenon because it does not permit to satisfy the initial
boundary condition, at t=0, on the first time derivative of the
nematic tilt angle. According to this approach, the first time
derivative of the nematic distortion is discontinuous at t=0,
and the second-order time derivative presents, at t=0, has a
�-Dirac behavior. In this model, our analysis shows that for
large t, the relaxation times are multiple of the diffusion
time. We have also analyzed the model where the inertial
properties of the nematic molecules are taken into account,
in such a manner to satisfy the initial boundary conditions on
the first-order time derivative of the tilt angle. In this frame-
work the dynamical evolution of the nematic deformation, in
the initial time, depends on the inertial properties of the nem-
atic molecules, and the evolution toward the equilibrium
state is still governed by the diffusion time. As discussed in
the paper, both these approaches are based on the hypothesis
that the distorting field is removed in a discontinuous manner
at t=0, i.e., that the switching time is zero. We have shown
that in a real case, where the switching time is of the order of
the diffusion time, a rigorous analysis has to be done, taking

into account the time dependence of the distorting field. In
this framework, the continuity of the first time derivative of
the nematic tilt angle is automatically satisfied, and for large
t, the approaching to the equilibrium state is described by a
multirelaxation phenomenon, whose characteristic times are
proportional to the diffusion time. The evolution of the sys-
tem from t=0 to the equilibrium state can differ strongly
from the one predicted by the two models based on the dif-
fusion equation, or taking into account the inertial properties
of the nematic molecules.

APPENDIX

Let us consider a nematic liquid crystal submitted to an
electric field. The electrostatic energy density due to the in-
teraction between the electric field and the nematic material
is given by �25� fe= �1 /2�D ·E, where the electric displace-
ment D and the electric field E are related by the constitutive
relation D=�E, where � is the dielectric tensor. By assuming
that the liquid crystal behaves as a perfect insulator, we have
furthermore, in the quasistatic case, the equations of Max-
well � ·D=0, and ��E=0. In the slab geometry considered
in our analysis, from the Maxwell equations it follows that
the electric field has only the z component different from
zero, E=Ez, where z is a unit vector along the z axis, and
that the z component of the electric displacement, D, is con-
stant. Consequently, from the constitutive equation we obtain

FIG. 3. �Color online� ��z , t� versus z /d for the inertial �dashed
red line� and diffusion �continuous black line� models for different
values of t.

FIG. 4. �Color online� �D�̇t versus t /�D evaluated for z=d /3 for
the case characterized by a distorting field for different relaxation
times �dashed red and dotted green lines�. The diffusion model
�continuous black line� is also shown in this figure as well as the
quantity evaluated by means of Eq. �17� �horizontal dashed-dotted
blue line�.
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D=�zzE, where �zz=�� cos2 �+�� sin2 � is the effective di-
electric constant along the z axis, and �� and �� the dielectric
constant along and perpendicular to the director, respectively.
It follows that

E =
D

�� − �a sin2 �
, �A1�

where �a=�� −�� is the dielectric anisotropy. Equation �A1�
shows that the electric field is not constant across the sample
as soon as �a�0 �26�. In this framework, the electrostatic
energy taking into account the interaction between the nem-
atic liquid crystal and the external field is

fe =
1

2
DE =

1

2
�zzE

2 =
D2

2��� − �a sin2 ��
. �A2�

In the limit of small deformation considered in our paper,
sin ���, and from Eq. �A2� we obtain, at the second order
in �,

fe =
D2

2��

+
1

2
�a�D

��
�2

sin2 � . �A3�

The first addendum on the rhs is inessential in our problem
because it is independent of the nematic orientation, and will
be neglected in the following. Furthermore, the second term
is quadratic in the �, as the elastic energy density fd

= �1 /2�k��� /�z�2. Consequently, it is enough to estimate D
at the zeroth order in � to have the total energy density f
= fd+ fe. To evaluate D, we use Eq. �A1�. By integrating it
over the thickness of the sample, and taking into account the
definition of electric potential, we get

V = �
−d/2

d/2

Edz = �
−d/2

d/2 D

�� − �a sin2 �
=

D

��

d�1 +
�a

��

�sin2 ��� ,

�A4�

where V is the difference of potential between the electrode
at z=−d /2 and that at z=d /2, and

�sin2 �� =
1

d
�

−d/2

d/2

sin2 �dz . �A5�

From Eq. �A4� we get, at the zeroth order in the nematic
orientation, D=���V /d�. This relation shows that, in the limit
of small deformations, the z component of the electric field
can be considered constant, and equal to E0=V /d, and the
electric energy density responsible for the electric torque act-
ing on the nematic director is

fe =
1

2
�aE0

2 sin2 � , �A6�

which is the expression used to derive the bulk differential
equation in the Sec. II.

FIG. 5. �Color online� ��z , t� versus z /d is illustrated for the
case of a distorting field depending on t �dashed red line� and for
the diffusion model �continuous black line�, for different values of t.

FIG. 6. �Color online� �D�̇t versus t /�D evaluated for z=d /3 for
the three models worked out in the paper.
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